Quick Order Pad
Your Shopping Cart is Empty
Hello, Sign In

26 FAQs on n-Octylglucoside (OG) Biodetergent

Back to List

n-Octylglucoside (commonly referred to as OG) is a non-ionic detergent intended for solubilizing membrane-bound proteins in their native state and for the preparation of lipid vesicles. Its well defined chemical structure, small uniform micelles and high water solubility make it superior to most other non-ionic detergent for membrane solubilization.


1. Alternative Names:
OG, C8Glc, Octyl-beta-glucoside, OG, Octyl-beta-glucopyranoside, Octyl- beta-D-glucopyranoside

2. Chemical Name:
n-Octyl-beta-D-glucoside

3. AG Scientific SKU:
O-1036

 

4. Detergent Class:
Nonionic

 

5. Description:

A non-ionic detergent intended for solubilizing membrane-bound proteins in their native state and for the preparation of lipid vesicles. It's well-defined chemical structure, small uniform micelles, and high water solubility makes it superior to most of the other non-ionic detergents for membrane solubilization.

Because of its high critical micelle concentration (CMC) (20-26 mM), it has become one of the most important detergents for purification of membrane proteins because it can readily be removed via dialysis compared to bile salts from final protein extracts. Has been shown to increase the resolution of proteins in 2D gels. 

6. Aggregation Number:
27

7. Micelle Molecular Weight:
8,000 g

8. CAS Number:
249-887-8

9.MDL number:
MFCD00063288

10. PubChem Substance ID:
24898051

11.Critical Micelle Concentration (CMC):
24 to 26mM (0.6716 to 0.7300%, w/v).

12. Micellar Properties:
CMC: 24-26 mM in water (Other CMC values have been reported as low as 13.5 mM).

13. Micellar size:
Reported aggregation numbers from 27 to 100 corresponding to micellar molecular weights of 8,000 to29,000 have been reported. Hydrodynamic radii of 15 ±1 angstroms (micellar MW 8000 ±1,000; aggregation number 27) to 23 ±3 angstroms (micellar MW 22,000 ±3,000; aggregation number 75 ±10) have been reported(see right).

14. Cloud Point:
>100°C

15. Dialyzable?
Yes

16. Merck #:
14,6767

17. Method of Preparation:
Synthetic

18. Stability / Shelf Life:
When stored properly, at 20 °C and desiccated, n-octylglucoside should have a minimum shelf-life of two to three years.

19. Solubility / Solution Stability:
The solubility of n-Octyl-Glucoside at 100 mg/ml in water yielding a clear to very slightly hazy colorless solution. Aqueous solutions stored refrigerated are stable for approximately three days.

20. Absorbance (400nm) of a 20% solution:
<0.025

21. Absorbance (280nm) of a 20% solution:
<0.300

22. Specific Rotation (20°C, 1%):
-29.0 to -32.0°C

23. n-Octanol:
Impurity traditionally <0.001%,

24. Alpha Isomer:
Impurity traditionally <0.01% (HPLC)

25. In basic terms, how does OG work?
Detergents solubilize membrane proteins by mimicking the lipid bilayer environment. Micelles formed by detergents are analogous to the bilayers of the biological membranes. Proteins incorporate into these micelles via hydrophobic interactions. Hydrophobic regions of membrane proteins, normally embedded in the membrane lipid bilayer, are now surrounded by a layer of detergent molecules and the hydrophilic portions are exposed to the aqueous medium. This keeps the membrane proteins in solution. Complete removal of detergent could result in aggregation due to the clustering of hydrophobic regions and, hence, may cause precipitation of membrane proteins.

26. Why don't you use phospholipids?
Although phospholipids can be used as detergents in simulating the bilayer environment, they form large structures, called vesicles, which are not easily amenable for isolation and characterization of membrane proteins. Lysophospholipids form micelles that are similar in size to those formed by many detergents. However, they are too expensive to be of general use in everyday protein biochemistry. Hence, the use of synthetic detergents is highly preferred for the isolation of membrane proteins.