3046 total record number
25 records this year

To narrow your search, use one or more of the following search menus below.

To search by keyword, you may search by type of cell/animal/assay/protein/research or publication.

Items 36 to 40 of 3044 total

Show
per page
  • Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery

    Song, J; Lafont, A; Chen, J; Wu, FM; Shirahige, K; Rankin, S;
    Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
    Acetylation of the Smc3 subunit of cohesin is essential to establish functional cohesion between sister chromatids. Smc3 acetylation is catalyzed by members of the Eco family of acetyltransferases, although the mechanism by which acetylation is regulated and how it promotes cohesion are largely unknown. In vertebrates, the cohesin complex binds to chromatin during mitotic exit and is converted to a functional form during or shortly after DNA replication. The conserved proliferating cell nuclear antigen-interacting protein box motif in yeast Eco1 is required for function, and cohesin is acetylated during the S phase. This has led to the notion that acetylation of cohesin is stimulated by interaction of Eco1 with the replication machinery. Here we show that in vertebrates Smc3 acetylation occurs independently of DNA replication. Smc3 is readily acetylated before replication is initiated and after DNA replication is complete. However, we also show that functional acetylation occurs only in association with the replication machinery: disruption of the interaction between XEco2 and proliferating cell nuclear antigen prevents cohesion establishment while having little impact on the overall levels of Smc3 acetylation. These results demonstrate that Smc3 acetylation can occur throughout interphase but that only acetylation in association with the replication fork promotes sister chromatid cohesion. These data reveal how the generation of cohesion is limited to the appropriate time and place during the cell cycle and provide insight into the mechanism by which acetylation ensures cohesion.
    10.1074/jbc.M112.400192
  • RET modulates cell adhesion via its cleavage by caspase in sympathetic neurons

    Cabrera, JR; Bouzas-Rodriguez, J; Tauszig-Delamasure, S; Mehlen, P;
    Apoptosis, Cancer, and Development Laboratory, Equipe labellisée La Ligue, Centre de Cancérologie de Lyon, INSERM U1052, CNRS UMR586, Université de Lyon, 69008 Lyon, France
    RET is a tyrosine kinase receptor involved in numerous cellular mechanisms including proliferation, neuronal navigation, migration, and differentiation upon binding with glial cell derived neurotrophic factor family ligands. RET is an atypical tyrosine kinase receptor containing four cadherin domains in its extracellular part. Furthermore, it has been shown to act as a dependence receptor. Such a receptor is active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. However, different data suggest that RET is not always associated with the cell death/survival balance but rather provides positional information. We demonstrate here that caspase cleavage of RET is involved in the regulation of adhesion in sympathetic neurons. The cleavage of RET generates an N-terminal truncated fragment that functions as a cadherin accessory protein, modifying cadherin environment and potentiating cadherin-mediated cell aggregation. Thus, the caspase cleavage of RET generates two RET fragments: one intracellular domain that can trigger cell death in apoptotic permissive settings, and one membrane-anchored ectodomain with cadherin accessory activity. We propose that this latter function may notably be important for the adequate development of the superior cervical ganglion.
    10.1074/jbc.M110.195461
  • Human mismatch repair: reconstitution of a nick-directed bidirectional reaction

    Constantin, N; Dzantiev, L; Kadyrov, FA; Modrich, P;
    Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
    Bidirectional mismatch repair directed by a strand break located 3 or 5 to the mispair has been reconstituted using seven purified human activities: MutSalpha, MutLalpha, EXOI, replication protein A (RPA), proliferating cell nuclear antigen (PCNA), replication factor C (RFC) and DNA polymerase delta. In addition to DNA polymerase delta, PCNA, RFC, and RPA, 5 -directed repair depends on MutSalpha and EXOI, whereas 3 -directed mismatch correction also requires MutLalpha. The repair reaction displays specificity for DNA polymerase delta, an effect that presumably reflects interactions with other repair activities. Because previous studies have suggested potential involvement of the editing function of a replicative polymerase in mismatch-provoked excision, we have evaluated possible participation of DNA polymerase delta in the excision step of repair. RFC and PCNA dramatically activate polymerase delta-mediated hydrolysis of a primer-template. Nevertheless, the contribution of the polymerase to mismatch-provoked excision is very limited, both in the purified system and in HeLa extracts, as judged by in vitro assay using nicked circular heteroplex DNAs. Thus, excision and repair in the purified system containing polymerase delta are reduced 10-fold upon omission of EXOI or by substitution of a catalytically dead form of the exonuclease. Furthermore, aphidicolin inhibits both 3 - and 5 -directed excision in HeLa nuclear extracts by only 20-30%. Although this modest inhibition could be because of nonspecific effects, it may indicate limited dependence of bidirectional excision on an aphidicolin-sensitive DNA polymerase.
    10.1074/jbc.M509701200
  • JNK-independent activation of c-Jun during neuronal apoptosis induced by multiple DNA-damaging agents

    Besirli, CG; Johnson, EM;
    Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
    Activation of the JNK pathway and induction of the AP-1 transcription factor c-Jun are critical for neuronal apoptosis caused by a variety of insults. Ara-C-induced DNA damage caused rapid sympathetic neuronal death that was associated with an increase of c-jun expression. In addition, c-Jun was phosphorylated in its N-terminal transactivation domain, which is important for c-Jun-mediated gene transcription. Blocking c-Jun activation by JNK pathway inhibition prevented neuronal death after stress. In contrast, neither the JNK inhibitor SP600125 nor the mixed lineage kinase inhibitor CEP-1347 prevented cytosine arabinoside-induced neuronal death, demonstrating that the JNK pathway was not necessary for DNA damage-induced neuronal apoptosis. Surprisingly, SP600125 or CEP-1347 could not block c-Jun induction or phosphorylation after DNA damage. Pharmacological inhibitors of cyclin-dependent kinase (CDK) activity completely prevented c-Jun phosphorylation after DNA damage. These results demonstrate that c-Jun activation during DNA damage-induced neuronal apoptosis was independent of the classical JNK pathway and was mediated by a novel c-Jun kinase. Based on pharmacological criteria, DNA damage-induced neuronal c-Jun kinase may be a member of the CDK family or be activated by a CDK-like kinase. Activation of this novel kinase and subsequent phosphorylation of c-Jun may be important in neuronal death after DNA damage.
    10.1074/jbc.M300742200
  • BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons

    Harris, CA; Johnson, EM;
    Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
    The Bcl-2 family of proteins are key regulators of programmed cell death. A distinct subfamily of BH3-only molecules has been identified, but their exact mechanism of action remains unclear. Here we show that the BH3-only Bcl-2 family members, Dp5/Hrk and Bim, are induced upstream of the Bax checkpoint in neuronal apoptosis in a manner that shows significant dependence on JNK signaling. We also show that Dp5 and other BH3-only proteins kill cerebellar granule neurons in a Bax-dependent manner. These studies demonstrate that BH3-only members do not act independently in their proapoptotic activities but rather require the action of multidomain proapoptotic Bcl-2 family members to produce cell death.
    10.1074/jbc.M104073200

Items 36 to 40 of 3044 total

Show
per page
To Top