2909 total record number
25 records this year

To narrow your search, use one or more of the following search menus below.

To search by keyword, you may search by type of cell/animal/assay/protein/research or publication.

Items 46 to 50 of 2909 total

Show
per page
  • Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells

    Frum, RA; Khondker, ZS; Kaufman, DG;
    Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
    We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
    10.4161/cc.8.19.9682
  • DNA replication in early S phase pauses near newly activated origins

    Frum, RA; Chastain, PD; Qu, P; Cohen, SM; Kaufman, DG;
    Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
    During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9-35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers.
    10.4161/cc.7.10.5879
  • Developmental exposure to the organochlorine insecticide endosulfan damages the nigrostriatal dopamine system in male offspring

    Wilson, WW; Shapiro, LP; Bradner, JM; Caudle, WM;
    Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
    The contribution of environmental toxicants to the etiology and risk of Parkinson s disease (PD) has been clearly established, with organochlorine insecticides routinely shown to damage the nigrostriatal dopamine pathway. Although PD is generally considered an adult onset disease, it has been postulated that exposure to environmental contaminants or other factors early in life during critical periods of neurodevelopment could alter the dopaminergic circuit and predispose individuals to developing PD. Recent epidemiological evidence has found exposure to the organochlorine insecticide endosulfan to be a risk factor for PD. However, the specific dopaminergic targets or vulnerable developmental time points related to endosulfan exposure have not been investigated. Thus, we sought to investigate dopaminergic neurotoxicity following developmental exposure to endosulfan as well as following an additional challenge with MPTP. Our in vitro findings demonstrate a reduction in SK-N-SH cells and ventral mesencephalic primary cultures after endosulfan treatment. Using an in vivo developmental model, exposure to endosulfan during gestation and lactation caused a reduction in DAT and TH in the striatum of male offspring. These alterations were exacerbated following subsequent treatment with MPTP. In contrast, exposure of adult mice to endosulfan did not elicit dopaminergic damage and did not appear to increase the vulnerability of the dopamine neurons to MPTP. These findings suggest that development during gestation and lactation represents a critical window of susceptibility to endosulfan exposure and development of the nigrostriatal dopamine system. Furthermore, these exposures appear to sensitize the dopamine neurons to additional insults that may occur later in life. Copyright © 2014 Elsevier Inc. All rights reserved.
    10.1016/j.neuro.2014.07.008
  • Early development and axis specification in the sea anemone Nematostella vectensis

    Fritzenwanker, JH; Genikhovich, G; Kraus, Y; Technau, U;
    Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008, Bergen, Norway
    We investigated the early development of the sea anemone Nematostella vectensis, an emerging model system of the Cnidaria. Early cleavage stages are characterized by substantial variability from embryo to embryo, yet invariably lead to the formation of a coeloblastula. The coeloblastula undergoes a series of unusual broad invaginations-evaginations which can be blocked by cell cycle inhibitors suggesting a causal link of the invagination cycles to the synchronized cell divisions. Blastula invagination cycles stop as cell divisions become asynchronous. Marking experiments show a clear correspondence of the animal-vegetal axis of the egg to the oral-aboral axis of the embryo. The animal pole gives rise to the concave side of the blastula and later to the blastopore of the gastrula, and hence the oral pole of the future polyp. Asymmetric distribution of granules in the unfertilized egg suggest an animal-vegetal asymmetry in the egg in addition to the localized position of the pronucleus. To determine whether this asymmetry reflects asymmetrically distributed determinants along the animal-vegetal axis, we carried out blastomere isolations and embryonic divisions at various stages. Our data strongly indicate that normal primary polyps develop only if cellular material from the animal hemisphere is included, whereas the vegetal hemisphere alone is incapable to differentiate an oral pole. Molecular marker analysis suggests that also the correct patterning of the aboral pole depends on signals from the oral half. This suggests that in Nematostella embryos the animal hemisphere contains organizing activity to form a normal polyp.
    10.1016/j.ydbio.2007.07.029
  • Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD

    Genskow, KR; Bradner, JM; Hossain, MM; Richardson, JR; Caudle, WM;
    Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
    Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0-25 μM) for 24 h causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0-10 μM) after 72 h of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.
    10.1016/j.ntt.2015.06.003

Items 46 to 50 of 2909 total

Show
per page
To Top